
It Was Like That When I Got Here:
Steps Toward Modernizing A Legacy Codebase

@pmjones

mlaphp.com

http://mlaphp.com

Read These

About Me
• 8 years USAF Intelligence

• BASIC in 1983, PHP since 1999

• Jr. Developer, VP Engineering

• Aura project, Zend_DB, Zend_View

• ZCE Advisory Board

• PHP-FIG: PSR-1, PSR-2, PSR-4

• Action-Domain-Responder

Overview

• The code you are suffering with

• Incremental reductions of technical debt

• Life is better but still room for improvement

It Was Like That When I Got Here

Messy Codebase

• Page scripts in docroot (page-based)

• Spaghetti include logic (include-oriented)

• Few or no classes

• Global variables

• No unit tests -- QA working overtime

No Time To Remedy

• Bugs to fix, right now

• Features to implement, right now

• Making your own life easier?  
Not a priority.

• Dig in and try to make do

• How did it get this bad?  
“It was like that when I got here.”

The Great Thing About PHP ...

• ... is that anyone can use it.

• Have an idea? Implement it!

• It works! Great success!

• ... it “works.”

The Awful Thing About PHP ...

• ... is that anyone can use it.

• The codebase is like a “dancing bear”

• Architecture? Maintenance? Testing?

• Move on to the next idea ...

• ... but you are stuck with it now.

Typical Page Script

see editor for example

Why Is It Like This?

• Original developer probably didn’t know better

• Subsequent developers worked with what was there

• “We can fix it later ...”

• ... until later becomes now.

Technical Debt

• A metaphor referring to the eventual consequences of poor
or evolving software architecture and software development
within a codebase.

• As a change is started on a codebase, there is often the
need to make other coordinated changes at the same time
in other parts of the codebase.

• http://en.wikipedia.org/wiki/Technical_debt

http://en.wikipedia.org/wiki/Technical_debt

Paying Off Technical Debt

Paying Off Technical Debt

• A lot like paying off financial debt

• Got the stuff first, but have to pay for it eventually

• Must pay off technical debt not of our own choosing

• Suffer as things are, or suffer through change

Declare Bankruptcy

• Rewrite from scratch!

• Expend effort while not earning
revenue

• Old devs on new project?  
New devs on new project?

• Takes longer than you think

• End up with different bad
architecture

Incremental Approach

• Pay off smallest debt first 
(build inertia and raise spirits)

• Small changes across codebase

• Build on previous small changes

• Improve quality over time

Incremental Goals

• Keep the application running

• Consolidate classes for autoloading (PSR-0)

• Convert globals to injected dependencies

• After each change: “spot check”, commit, push, QA

Consolidate Classes For Autoloading

// without autoloading, must include file first 
include_once "/path/to/classes/Example/Name.php";  
$obj = new Example_Name(); 
 
// with autoloading, gets included automatically 
$obj = new Example_Name(); 

What Is Autoloading?

PSR-0

• Class name maps directly to file name

• Namespace separators map to directory separators

• Class underscores map to directory separators

• Vendor\Package_Name\Example_Name 
=> Vendor/Package_Name/Example/Name.php

function autoload($class)  
{  
 $class = ltrim($class, '\\'); 
 $file = '';  
 $ns = '';  
 $pos = strripos($class, '\\')  
 if ($pos) { 
 $ns = substr($class, 0, $pos); 
 $class = substr($class, $pos + 1); 
 $file = str_replace('\\', DIRECTORY_SEPARATOR, $ns)  
 . DIRECTORY_SEPARATOR;  
 } 
 $file .= str_replace('_', DIRECTORY_SEPARATOR, $class); 
  
 $base = "/path/to/classes";  
 require "{$base}/{$file}.php";  
}
 
spl_autoload_register('autoload'); 

Move Class Files

• If you have class files in several paths, move to same base path

• If you have more than one class per file, split into separate files

• If you define classes as part of a script, extract to own file

• Remove include/require as you go (grep)

• If needed, change names as you go (grep)

Convert Function Files To Class Files

• Many projects have files of function definitions

• Wrap in a class as static or instance methods

• Move to classes directory

• Change calls to static or instance calls (grep)

• Remove include/require as you go (grep)

Original Function

function fetch_results() 
{  
 global $db;  
 $results = $db->fetch('whatever');  
 return $results;  
}  
 
$results = fetch_results(); 

Static Method

class Example 
{  
 public static function fetchResults()  
 { 
 global $db;  
 $results = $db->fetch('whatever');  
 return $results;  
 } 
}  
 
$results = Example::fetchResults(); 

Instance Method

class Example 
{  
 public function fetchResults() 
 { 
 global $db;  
 $results = $db->fetch('whatever');  
 return $results;  
 } 
}  
 
$example = new Example;  
$results = $example->fetchResults(); 

Convert Globals to Injected Dependencies

Instantiating Dependencies In Methods

class Example 
{  
 public function fetchResults() 
 { 
 $db = new Database('username', 'password');  
 return $db->fetch('whatever');  
 } 
}  

Drawbacks Of Method Instantiation

• New connection on each call

• Cannot reuse connection

• Parameter modification

Global Dependencies
// setup file 
$db = new Database('username', 'password'); 
 
// example class file 
class Example 
{  
 public function fetchResults() 
 { 
 global $db;  
 return $db->fetch('whatever');  
 } 
}  

Global Drawbacks

class Evil 
{  
 public function actionAtADistance()  
 { 
 global $db;  
 unset($db);  
 } 
}  

Dependency Injection

• Instead of reaching out from inside the
class to bring in dependencies ...

• ... inject the dependency into the class
from the outside.

Starting Point: Global In Method

class Example 
{  
 public function fetchResults() 
 { 
 global $db;  
 return $db->fetch('results'); 
 } 
}  

Interim: Global In Constructor
class Example 
{  
 public function __construct() 
 { 
 global $db;  
 $this->db = $db;  
 } 
  
 public function fetchResults() 
 { 
 return $this->db->fetch('results'); 
 } 
}  

Final: Dependency Injection

class Example 
{  
 public function __construct($db)  
 { 
 $this->db = $db;  
 } 
  
 public function fetchResults() 
 { 
 return $this->db->fetch('results'); 
 } 
}  

• Must change all new instantiations to pass dependencies (grep)

• Class instantiation inside methods? Pass intermediary dependencies.

Change Instantiation Calls

Intermediary Dependency
class Example 
{  
 public function fetchResults()  
 { 
 global $db;  
 return $db->fetch('whatever'); 
 } 
}  
 
class Service 
{  
 public function action() 
 { 
 $example = new Example;  
 return $example->fetchResults(); 
 } 
}  

class Example 
{  
 public function __construct($db)  
 { 
 $this->db = $db;  
 } 
 public function fetchResults() 
 { 
 return $this->db->fetch('whatever'); 
 } 
}  
 
class Service 
{  
 public function __construct($db)  
 { 
 $this->db = $db;  
 } 
 public function action()  
 { 
 $example = new Example($this->db); 
 return $example->fetchResults(); 
 } 
}  

Eliminate Intermediary Dependency

class Service 
{  
 public function __construct($example)  
 { 
 $this->example = $example;  
 }
  
 public function action()  
 { 
 return $this->example->fetchResults(); 
 } 
}  

Progression of Instantiation
// all globals 
$service = new Service;  
 
// intermediary: Example uses DI,
// but Service creates Example internally 
$db = new Database('username', 'password'); 
$service = new Service($db);  
 
// all DI all the time 
$db = new Database('username', 'password'); 
$example = new Example($db);  
$service = new Service($example); 

Life After Reorganizing

Initial Goals Completed ...

• Consolidated into classes with PSR-0 and autoloading

• Removed globals in favor of dependency injection

• Kept it running the whole time

• Paid off some technical debt

• Organizational structure for future work

• Start writing unit tests

WE ALL TEST DOWN
(with apologies to Stephen King’s “It”)

... But Much Remains

• Using new keyword

• Embedded SQL statements

• Embedded domain logic

• Embedded presentation logic

• Embedded action logic

• Embedded include calls

• Router + front controller

• DI container

leanpub.com/mlaphp

Autoloaded,
Dependency Injected,

Unit Tested,
Layer Separated,
Front Controlled

https://leanpub.com/mlaphp

