
R E T H I N K I N G  
W H AT  Y O U  T H I N K  

Y O U  K N O W

Paul M. Jones 
 

joind.in/talk/7fee8

https://joind.in/talk/7fee8


R E A D  T H I S



A B O U T

• BASIC in 1983, PHP since 1999 

• Jr. Developer, VP Engineering 

• Zend Framework 1 (DB and View) 

• Founding member of PHP-FIG: 
PSR-1, PSR-2, PSR-4 

• Aura, Atlas, AutoRoute 

• https://leanpub.com/mlaphp

https://leanpub.com/mlaphp


O V E R V I E W

• How we make decisions 

• Problem: legacy code 

• Server-side MVC 

• Research and rethinking 

• Action Domain Responder



H O W  D O  W E  M A K E  D E C I S I O N S ?

V I A  T H E  E S S E N T I A L  D R U C K E R ,  C H  1 7 ;  O R I G .  " T H E  E F F E C T I V E  E X E C U T I V E " ,  1 9 6 6 .  

http://paul-m-jones.com/post/2010/11/06/start-with-opinions-not-facts/


G E T  T H E  FA C T S . . .

• Technical problem at work? 

• Start with the facts! 

• Facts will lead to the right solution.



. . .  W H I C H  FA C T S ?

• Water boils at 212º F (100º C). 

• The Sahara Desert is in  
northern Africa. 

• The Earth orbits ~93M miles 
(~150M km) from the Sun.



R E L E VA N C E

• Nobody starts with the facts. 

• Everybody starts with 
"criteria of relevance." 

• Filter against the infinity of facts.



P R E - E X I S T I N G  
W O R L D  V I E W

• Observations and experience 

• Theories and knowledge 

• Opinions



C O N F L I C T I N G  
W O R L D  V I E W S

• Two sets of filters 

• Different collections of facts 

• Both collections are true 

• Lead to very different  
proposed solutions



W H I C H  W O R L D  V I E W  
I S  " R I G H T "  ?

• Proposal is not based on "facts"  

• It is based on "world view" 

• Warning: not "everything is opinion" 

• Proposal is a hypothesis 

• Some more valid than others



T E S T  A N D  O B S E R V E

• Don't argue about opinions 

• Test hypotheses, per circumstances 

• Observe results 

• Pick the most-valid proposal 

• Replicability is even better



E F F E C T  O N  
W O R L D  V I E W

• New observation is new knowledge 

• Reinforce pre-existing world view 

• Rationalize disconfirmation 

• Accept new criteria of relevance 

• Revise or replace world view



– E R N E S T  R U T H E R F O R D

“There is only one science.  
It is called physics. 

Everything else is stamp collecting.” 



N O T  S C I E N C E

• Physics provides predictive capacity 

• Collect observations 

• Patterns of organization 

• World views as ways of 
organizing knowledge 

• Observably true



W H AT  D E C I S I O N  A R E  W E  T R Y I N G  T O  M A K E ?



H O W  T O  O R G A N I Z E  
S E R V E R - S I D E  C O D E

• Nuke it from orbit? 

• No: reorganize and refactor 

• Comprehensible 

• Maintainable 

• Testable



– S E PA R AT I O N  O F  C O N C E R N S  ( I N F O G A L A C T I C )

“When concerns are well-separated, individual sections can be reused, 
as well as developed and updated independently.  

 
Of special value is the ability to later improve or modify one section of code 

without having to know the details of other sections, 
and without having to make corresponding changes to those sections.” 

https://infogalactic.com/info/Separation_of_concerns


M O D E L  V I E W  
C O N T R O L L E R

• Invented in 1979 for GUI desktop apps 

• Model: data source and business logic 

• View: what you see on the screen 

• Controller: receives user input, 
coordinates model and view



S E R V E R - S I D E  M V C

• Applied to server-side apps 
by Sun in 1999 ("Model 2") 

• Controller handles HTTP request 

• Model performs business logic 

• View generates HTML 

• Organizing principle / world view



M O D E R N I Z AT I O N  
P R O C E S S

• Extract data source logic 

• Extract domain logic 

• Extract presentation logic



W H E R E  D O E S  
H E A D E R ( )  G O ?

• Model? Not data or business logic. 

• View? Can't see it on the screen. 

• Controller! Last place left in our 
application architecture.



C O G N I T I V E  
D I S S O N A N C E

• More comprehensible 

• More maintainable 

• Model is testable 

• View is testable 

• Controller ... not testable?



U S E  A  R E S P O N S E  
O B J E C T ?

• Solves the testing problem  
by buffering header() calls 

• But where do the  
$response->header() calls go? 

• Why is this the job of the Controller?



E N V I R O N M E N T S  A N D  
R E L AT I O N S H I P S

• Client-side in-memory GUI 

• One MVC triad per screen element 

• Notifier/observer system 

• Continuous invocation event loop 

• Server-side over-the-network  
shared-nothing request/response



N O T  A N  A P P L I C AT I O N  
A R C H I T E C T U R E

• MVC is a user interface pattern 

• Fowler: "Web Presentation" 

• Our concept of MVC is a world view 

• Outcomes are unsatisfactory 

• New knowledge: new world view



R E T H I N K I N G  O U R  O P I N I O N S



W H AT  I S  T H E  V I E W ?

• Old: "The part the user sees." 

• New: "The output from the application." 

• Subtle distinction 

• Fits previous facts 

• Expands relevance filter



W H AT  I S  T H E  
S E R V E R  O U T P U T ?

• Input is HTTP Request 

• Returns HTTP Response 

• This is our user interface 

• The Template is not the View 

• The Response is the View 

• Both body and headers



R E S P O N D E R

• View: "What the user sees" -> "What the server presents" 

• Presentation layer is the response-building subsystem 

• header() etc. go in the Responder 

• "Unseen" bodies: JSON, XML, etc. 

• Responder builds the Response



M O R E  T E S TA B L E

• Responder isolated from Model and Controller 

• Controller feeds data to Responder 

• Responder sets headers, uses template system, etc. 

• Returns a Response object 

• More satisfactory outcome



– S E PA R AT E D  P R E S E N TAT I O N  ( F O W L E R ,  2 0 0 6 )

“Ensure that any code that manipulates presentation only 
manipulates presentation, pushing all domain and data source logic 

into clearly separated areas of the program. 

... GUI widgets and structures in a rich client application, 
HTTP headers and HTML in a web application, 
or command line arguments and print statements 

in a command line application.” 

https://martinfowler.com/eaaDev/SeparatedPresentation.html


R E P L A C I N G  S E R V E R - S I D E  M V C



C O N S E Q U E N C E S  
O F  W O R L D  V I E W

• Responders are yet another thing to 
inject: one per Controller action 

• Leads to single-action Controllers 

• Leads to shorter constructors 

• Leads to other domain logic patterns



D O M A I N  L O G I C

• Transaction Script 

• Service Layer 

• Application Service 

• Use Case



A C T I O N  D O M A I N  R E S P O N D E R

• Action is the logic to connect the Domain and Responder. It invokes the 
Domain with inputs collected from the HTTP Request, then invokes the 
Responder with the data it needs to build an HTTP Response. 

• Domain is an entry point to the domain logic forming the core of the 
application, modifying state and persistence as needed. 

• Responder is the presentation logic to build an HTTP Response from the 
data it receives from the Action.



C O N C L U S I O N



F R O M  O N E  W O R L D  V I E W  T O  A N O T H E R

• How we make decisions: facts filtered through theory for hypotheses 

• Code organization according to MVC principles 

• From "View" as Template + Response, to Responder 

• Replace MVC world view, with Action Domain Responder



T H A N K S !

• paul-m-jones.com/adr 

• leanpub.com/mlaphp 

• joind.in/talk/7fee8

http://paul-m-jones.com/adr
http://leanpub.com/mlaphp
http://joind.in/talk/7fee8



