Solving the N+ | Problem:
or."'A Stitch In Time Saves Nine”

Daul-m-jones.com
@pmjones

https://joind.in/ 1 5630

http://paul-m-jones.com
https://joind.in/15630

Read T hese

Theo Schiossnagle

PATTERNS OF
ENTERPRISE
APPLICATION

ARCHITECTURE
Scalable Internet

Architectures

MARTIN FOWLER
Winn CONTRIBUTKINS By

Davip Rics,

MATTHEW FOEMMEL,

Evwarn Hiwar,

ROBERT MEE, Ann

Raxuy Stavroup

- 8 years USAF Intelligence

* BASIC in 1983, PHP since 1999

* Jr. Developer, VP Engineering Modernizing Legacy
* Aura, Radar, Relay, Arbiter ApplicatiOHS in PHP

Paul M. Jones
* PHP-FIG: PSR-1, PSR-2, PSR-4

* mlaphp.com

http://mlaphp.com

Overview

* Performance benchmarking
* The N+1| problem
* Native solutions to the N+ 1| problem

» Libraries to help with the N+1| problem

Performance Benchmarking

Benchmarking Subjects

- CPU * Programmer productivity

- RAM * Time to initial
implementation
* Disk access

* Time to add new major
* Database access feature

* Network access * Time to fix bugs

* Requests/second

— numeric meagsurement --
— control for variables -

Limitations of Performance

» A man’s got to know his
limitations

- Hardware, OS, web server,
language, framework, app

* Where in the stack to
expend effort?

Performance Measures

* Stock install (Amazon EC2 Large, Ubuntu, Apache, PHP, MySQL)
» Static index.html (Hello World!)

* Dynamic index.php (<?php echo 'Hello World!"'; ?7>)
* Database connect (nysgl_ * and PDO code)

» Database connect, query, and fetch (mysgl * and PDO code)

Baseline Performance

relative average
html 1.2514 2726.35
php 1 2178.63

5 runs of |0 users for 60 seconds, averaged

MySQL Connect

$host = 'localhost’;
suser = OO
$pass = 'admin’;
$dbname = 'bench':
$table = 'hello':

$conn = mysql_connect($host, $user, $pass);
mysql_select_db($dbname);
echo "Mysgl Connect!";

PDO Connect

$host = 'localhost’;
$user = 'root’;
$pass = ‘admin’;
$dbname = 'bench';
$table = 'hello';

$pdo = new PDO(
"mysql:host=%$host;dbname=%$dbname",
suser,

$pass
) ;

echo "PDO Connect!':

Connection Performance

MySQL relative average
connect 0.7926 1726.81
PDO relative average

connect 0.8346 1818.3

Database Table

TABLE hello
INT PRIMARY KEY AUTO_INCREMENT,
VARCHAR(1)

CREATE
1d
ch

) ;

INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT

INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO

hello
hello

r
r

r

ello
ello
ello

hello
hello
hello
hello
hello
hello
hello

e e e e e e e e e e R
O O O 0O 0O 000 0O 0O OO0
D 3 DO D OO D O e e R
N N N N N N N N N N N N

VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES

O —~ (M L

—0 —~ 5 O =

PN N N N N N N N N N N N
e N e N N N N N N N s e’
W W E U ErE U W E U U SR U U uE NWuBE

MySQL Query & Fetch

$conn = mysql_connect($host, $user, $pass);
mysql_select_db($dbname);

$rows = mysql_query("SELECT *x FROM $table ORDER BY id");

while ($row = mysql fetch _array($rows, MYSQL_ASSOC)) {
echo $row['ch'];

+

PDO Query & Fetch

$pdo = new (
"mysql:host=%$host;dbname=%$dbname",
suser,

$pass
) ;

¢stmt = $pdo—>prepare("SELECT x FROM $table ORDER BY id");
¢stmt->execute():

$rows = $stmt=>fetchAl1l(: :FETCH_ASSO0C) ;
foreach ($rows as $row) {

echo $row['ch'];
s

Connect, Query, Fetch Performance

MySQL relative average
connect, query, fetch 0.6907 1504.76
PDO relative average

connect, query, fetch 0.7397 1611.61

Overall Performance

html

php

connect

query, fetch

0 700 1400 2100 2800

B mysg M pdo

The N+ 1| Problem

Background

* Performance problems in application report

* 2m rows into 40k record objects, 3+ hours

* Reduced dataset to 2000 rows and 40 record objects
* Profiler: 201 queries

° | query, plus 5 additional queries per record

N+1 in PHP

7y | query to get 10 posts
$stmt 'SELECT *x FROM posts LIMIT 10°,
$posts $sgl=>fetchAll($stmt);

// 10 queries for comments (1 per post)

¢stmt = "SELECT *x FROM comments WHERE post _1id =

foreach ($posts as &$post) {
$bind = array($post['id']);
$rows = $sql->fetchAll($stmt, $bind);
$post['comments’'] = $rows;

}

$posts = array/(
O => array/
|id| = |1|’
'body' => 'Post text',
'comments' => array
Q@ => array(
|id| =S |1|’
'post_1d' = '1°,
'body’ => 'Comment 1 text’
) »
W E
9 => array(
'id' => |9|’
'post_1d' = '1°,
'body' => 'Comment 10 text'
) »

))
))

o/
9 => array(...),

Why It's A Problem

* Each relationship is one extra query per master row
* 5 relationships == 5 queries per master row
* 10 records means 50 added queries

* 40,000 records means 200,000 added queries

* Performance drag. Need to use fewer queries.

Why Does N+1| Happen!

CRUDdy Mindset

* Create, read, update, delete

* Record-oriented focus

* ActiveRecord, RowDataGateway
* Collections are secondary

° In a hurry? Treat collection as a series of single records in a loop

BREAD Instead

* Browse, read, edit, add, delete

* “Browse” is a first-class requirement

- TableModule, TableDataGateway

* Build collections of records right away

- Efficient collection building lends itself to efficient record building

Single-Query Solution

Single Query: Intro

* Select all results, including relationships, in a single query

° Loop through results to marshal into domain objects

Single Query: One-to-One

// one—to—-one

¢stmt = 'SELECT posts.*, stats.hit _count FROM posts
LEFT JOIN stats ON stats.post 1id = posts.id
LIMIT 10°;

$rows = $sql->fetchAll($stmt);

$posts = array();

foreach ($rows as $post) {
$post['stats’']['hit _count'] = $post['hit _count'];
unset($post['hit_count']);
$posts[] = $post;

$stmt

$rows

//
el
e,
//
//
//
//
7/

posts.1d posts.author_id posts.

NNNR R R R

Single Query: One-to-Many

'SELECT posts.x, comments.* FROM posts

LEFT JOIN comments ON comments.post id = posts.id';

$sql->fetchAll($stmt);

U1 0101 LW W W W

Frist Psot! 1
Frist Psot! 2
Frist Psot! 3
Frist Psot! 4
Second post 5
Second post 6
Second post 7

title comments.i1d comments.body

Initial comment
Another comment

Third comment

Oh come on

1st comment on post 2
2nd comment on post 2
3rd comment on post 2

Single Query One-to-Many

$posts = array/
foreach ($rows as $row) {
$post_id = $row(['posts.id'];

if (! isset($posts[$post _id])) {
$posts[$post _id] = array/(
'id' => $row['posts.id'],
'title' => $row['posts.title'],
) ;
}

$posts[$post _id] ['comments'][] = array(
'id' => $row['comments.id'],
'body' => $row['comments.body'],

) ;

Single Query: Review

* Loop through result set to marshal into domain objects

* Fine when you have only “to-one” relationships

* “To-many” relationships introduce complexity (esp. more than one)
* Result set is larger and more repetitive

 Less efficient to marshal

» Difficult to LIMIT/OFFSET

Query-and-Stitch Solution

Query-and-Stitch: Intro

* One query for the master set
* Loop through master set to key on identity field
- One query for related set, against all rows in master set

* Loop through related set and stitch into master set

Query-and-Stitch: Master Set

// 1 query to get 10 posts.
¢stmt = "SELECT *x FROM posts LIMIT 10°,
$rows $sgl=>fetchAll($stmt);

// Find the ID of each the post
// and key the $posts array on them.
$posts = array();
foreach ($rows as $post) {
$1d = $post['1d’'];
$posts[$1d] = $post;

Query-and-Stitch: Related Set

// 1 query to get all comments for all posts at once.
$¢stmt = 'SELECT % FROM comments

WHERE post_id IN (:post_ids)';
array('post_ids' => array_keys($posts)):
$sgl=>fetchAll($stmt, $bind);

$bind
$rows

// Stitch into posts.

foreach ($rows as $comment) {
$1d = $comment['post _1d'];
$posts[$1d]['comments'][] = $comment;

Query-and-Stitch: Review

* One added loop (stitching into master set) but 9 fewer queries

* Best for “to-many” relationships but works for “to-one” as well

* Easy to do LIMIT/OFFSET
* Easy to add multiple related sets
* One query to get results

* One loop to stitch into master set

Query-and-Stitch: Performance

* 40k records from 2m rows (5 relationships)
* From 200,001 queries to 6 (I master, 5 related)

* From 3+ hours to ~5 minutes

Automating Query-and-Stitch

ORM

* Query-and-stitch is used by many (most? all?) ORMs for eager-fetch

- ORMs are disliked by a non-trivial set of developers
* Overhead of including and learning the ORM system
* Non- or pseudo-SQL query construction, hard to hand-tune
* Opaque behavior, ineffective/unpredictable in edge cases, resource hog

* Lazy loading of individual results will reintroduce N+ |

Aura.Marshal: Intro

* The problem is not SQL

° The problem is marshaling result sets into domain objects
 Aura.Marshal handles only marshaling, not queries

» Specify types and relationship fields

* Load types with results from your own queries

* Wires up the results into domain objects on fetch

Aura.Marshal: Types

$manager->setType('posts', array/(
'1dentity_field' => 'id',
'relation_names' => array/(
'comments' => array(
=> 'has_many',
=> 'id',
=> 'post_id'

'relationship’
'native_field"’
'foreign_field’
),
)
));

$manager->setType('comments', array/(

'1dentity_field' => 'id'’,
'relation_names' => array(
'post’ => array(

'foreign_type'
'relationship’
'native_field"’
'foreign_field’

=>
=>
=>
=>

'posts’,
'belongs_to"',
'post_1d"’,
Iidl

Aura.Marshal: Loading

// load posts and get back IDs

¢stmt = "SELECT * FROM posts LIMIT 10°;
$result = $sql=>fetchAll($stmt);

$post_ids = $manager->posts->load($result);

// load comments for posts
¢stmt = 'SELECT % FROM comments

WHERE post_id IN (:post_ids)';
$bind = array('post_ids' => $post _ids);
$result = $sql->fetchAll($stmt, $bind);
$manager->comments->load($result);

Aura.Marshal: Retrieval

foreach ($manager->posts as $post) {

echo 'Post titled ' . $post->title
. 'has ' . count($post->comments)
. '« . PHP EOL;

Conclusion

Conclusion

* Performance benchmarking

* Example of N+1| in PHP

° Mindset: CRUD vs BREAD

* Solutions: single query, query-and-stitch

» Aura.Marshal package as one way of automating

leanpub.com/sn | php

paul-m-jones.com
@pmjones

https://joind.in/15630 SOIViI‘lg the N+1
Thanks! Problem in PHP

http://leanpub.com/sn1php
http://paul-m-jones.com
https://joind.in/15630

